
GraphM user’s guide:

approximate graph matching algorithms

Mikhail Zaslavskiy∗†‡

mikhail.zaslavskiy@mines-paristech.fr

Francis Bach§

francis.bach@mines.org

Jean-Philippe Vert∗‡

jean-philippe.vert@mines.org

September 8, 2008

1 Introduction

GraphM is a software to solve the labeled graph matching problem, i.e., finding a matching between the vertices of
two graphs that conserves the structures of the graphs and matches vertices with similar vertices. This problem
arises in many situations, such as the comparison of molecules, of biological or social networks, or of images. It
is known to be computationally challenging, and the best matching can usually not be found in reasonable time
as soon as the graphs have more than a few tens of vertices. GraphM implements several algorithms to solve
approximately this problem, and allows the user to implement new algorithms. The package is written in C++
and was designed to maximally simplify the implementation of new graph matching algorithms.

GraphM is freely available under the GNU General Public License licence at http://cbio.ensmp.fr/graphm

2 Problem description

A graph G = (V,E) of size N is defined by a finite set of vertices V = {1, . . . , N} and a set of edges E ⊂ V × V .
We consider weighted undirected graphs with no self-loop, i.e., all edges (i, j) have an associated positive real
value w(i, j) = w(j, i) and w(i, i) = 0 ∀i, j ∈ V . Each such graph can be equivalently represented by a symmetric
adjacency matrix A where Aij = w(i, j).

Given two graphs G and H with the same number of vertices N1, the problem of matching G and H consists
in finding a correspondence between vertices of G and vertices of H which aligns G and H in some optimal way.
The correspondence between vertices may be defined by a permutation matrix P , where Pij is equal to 1 if the i-th
vertex of G is matched to the j-th vertex of H, and 0 otherwise. After applying the permutation defined by P to
the vertices of H we obtain a new graph isomorphic to H which we denote by P (H). The adjacency matrix of the
permuted graph, AP (H), is simply obtained from AH by the equality AP (H) = PAHPT .

In order to assess whether a permutation P defines a good matching between the vertices of G and those of H, a
quality criterion must be defined. We focus here on measuring the discrepancy between the graphs after matching
by counting the number of edges which are present in one graph and not in the other one:

F (P) = ||AG − AP (H)||
2
F = ||AG − PAHPT ||2F , (1)

where ||.||F is the Frobenius matrix norm. Therefore, the problem of graph matching can be reformulated as the
problem of minimization of F (P) over the set of permutation matrices.

An interesting generalization of the graph matching problem is the problem of labeled graph matching. Here
each graph has associated labels to all its vertices and the objective is to find an alignment that fits well graph

∗Mines ParisTech, CBIO - Centre for Computational Biology, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France
†Mines ParisTech, CMM - Centre de Morphologie Mathmatique, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France
‡Institut Curie, Centre de recherche, Biologie du developpement - U900, 26 rue d’Ulm, 75248 Paris cedex 05, France
§INRIA, Willow project, Département d’informatique, Ecole normale supérieure, 45, rue d’Ulm, 75230 Paris Cedex, France
1Otherwise the smallest may be completed with dummy nodes.

1

labels and graph structures at the same time. If we let Cij denote the cost of fitness between i-th vertex of G and
j-th vertex of H then the matching problem based only on label comparison can be formulated as follows

min
P

tr(CT P) =

N
∑

i=1

N
∑

j=1

CijPij =

N
∑

i=1

Ci,P (i). (2)

A natural way of unifying of (2) and (1) is a linear combination

min
P

{(1 − α)F (P) + αtr(CT P)}. (3)

In the following the term ‘objective function Fα(P)’ will refer to the function minimized in (3).

3 Algorithms & Parameters

The GraphM package proposes different approximate algorithms designed to solve (3). All algorithms use the linear
combination parameter α in (3), which is called alpha ldh in the configuration file below. Some algorithms use
also their own specific parameters.

1. The Umeyama algorithm (U).
Originally this algorithm was proposed for weighted graph matching problem without linear term [Ume88],
i.e., to solve:

P = arg max tr{|UG|
T |UH |P}. (4)

GraphM implements a natural extension to this method to include the linear term C and solve the following
problem, which is equivalent to (3):

P = arg max tr{(1 − α)|UG|
T |UH | + αCT)P}. (5)

2. The Rank algorithm (RANK)
This algorithm, proposed by [RJB07], is based on the power method. It does not always converge, therefore
we implemented a hard constraint on the number of iterations used in the code (1000 iteration). Usually the
Rank algorithm converges, if there is a significant linear term.

3. The Linear programming method (LP).
This algorithm, proposed by [AS93], has a complexity O(N7). It is therefore not recommended to use it for
graphs with more than 50 vertices.

4. The quadratic convex relaxation algorithm (QCV).
This method was proposed by [ZBV08]. It uses the Frank-Wolfe (FW) method for convex function min-
imization, the stopping criterion of the FW method being defined by two parameters: algo fw xeps and
algo fw feps. The stopping criterion is dx < x ∗ algo fw xeps & |df | < |f | ∗ algo fw feps. Another impor-
tant parameter is hungarian max, which defines the integer diapason used in hungarian method to represent
the initial real valued gradient matrix. The larger this parameter, the more precise is the Hungarian method,
but the slower is its speed.

5. The PATH algorithm (PATH).
This method was proposed by [ZBV08]. It uses the parameters of Frank-Wolfe method defined above, and
its own parameters: qcvqcc lambda M and qcvqcc lambda min. These parameters define the behavior of
adaptive path following strategy. The idea of the adaptive strategy is that the choice of dλ (see the schema
of the PATH algorithm [ZBV08]) depends on the behavior of Fλ

α (P). If the current value of dλ changes the
function Fλ

α (P) only a little, then it is better to use larger value of dλ to do larger steps. Or if the current dλ

changes Fλ
α (P) then we should decrease dλ. The minimal increment of dλ is defined by qcvqcc lambda min.

The larger the parameter qcvqcc lambda M, the larger steps are allowed.

Formally speaking there are four other algorithms which are not true algorithms but which may be used to provide
an idea about the shape of objective function.

1. Identity matching IDEN. This algorithm returns the identity permutation.

2

2. Random matching RAND. This algorithm returns a random permutation matrix.

3. Uniform matching UNIF. This algorithm does not produce a permutation matrix, the returned value is 1
N

1N1T
N ,

that is, the N × N matrix with all elements equal to 1/N. This algorithm is used as the starting point for
other graph matching algorithms.

4 Common parameters

Here we describe common parameters for all graph matching algorithms. All parameters are usually defined in a
configuration file, but they may be also given in the command line. Each line of the configuration file corresponds
to one parameter and has four parts: parameter name, sign ‘=’, parameter value and parameter type. There are
four different parameter types: ‘s’—string, ‘ d’ — double, ‘ i’ — integer, ‘ c’ — character.

4.1 Basic parameters

Parameter=Value Type Description

graph 1=../qap/m a 1EWK s Adjacency matrix N × N of the first graph (ASCII file)
graph 2=../qap/m a 1U19 s Adjacency matrix M × M of the second graph (ASCII file)
C matrix=../qap/1 s Matrix of vertex similarities C N × M (ASCII file)
algo=U QCV RANK PATH s List of graph matching algorithms
algo init sol=unif rand

U unif s

List of graph matching initialization algorithms. Each graph matching algo-
rithm may be used as an initialization algorithm, so here for example, initial
points for U and PATH are generated by unif algorithm, QCV is initialized by
a random matrix, and the initial point of the RANK algorithm is the solution
of the Umeyama algorithm

alpha ldh=0.5 d α parameter of the linear combination (3)
dummy nodes=0 i 0 — just add —N-M— nodes to the smallest graph, 1 — add M nodes to the

first graph and N nodes to the second. Depending on your problem different
choices are possibles. If the problem is to find an embedding of all nodes of the
smallest graph into the largest, so all vertices of the smallest graph should be
matched to something in the largest, then you have to use ‘dummy nodes=0
i’. If you want to authorize to the vertices of the smallest graph to be matched
to nothing, then ‘dummy nodes=1 i’ should be used

dummy nodes fill=0 d 0 — all dummy nodes are isolated, 0 < const ≤ 1 dummy nodes are connected
to all others by edges with weight const ∗ (min weight + max weight). An
interpretation of this parameter is the topological penalty for vertices to be
matched to dummy nodes. The more is the value, the less is the penalty.

dummy nodes c coef=0 d dummy nodes associated values for the C matrix: min(C)+const*(max(C)-
min(C)). This parameter is used to set the vertex similarity for dummy nodes.
The less is the value of this parameter, the less preferable is the association to
a dummy node.

exp out file=qap out s Output file for graph matching results
exp out format=Parameters

Compact Permutation s

List of output results, ‘Parameters’—used parameters, ‘Compact’ — value of
objective function for each used algorithm,‘Permutation’ — optimal permuta-
tion. For more details see section 5

verbose mode=1 i verbose mode. 1 - on/0 - off.
verbose file=cout s cout — standard output (screen), another value — name for verbose output

file

4.2 Additional parameters

Sometimes a C similarity matrix is used to define allowed (C(i, j) > 0) vertex associations, it means that all final
associations i−j should have a positive vertex similarity score. In this case next the two parameters may be useful.
If we denote by PC>0 the set of such permutations, then

• ‘blast match proj=1 i’ means that the final solution will be projected on PC>0.

3

• ‘blast match=1 i’ restrict the initial optimization set of all permutations to PC>0. It means that on each step
of FW algorithms a matrix from PC>0 will be used as the new direction. In other words not only the final
solution, but also each intermediate step is projected on PC>0.

5 Example

Let’s consider a simple example. Suppose that we have two graphs G and H defined by the following adjacency
matrices

G =

0 1 1 0 1 1 0 0 1 1
1 0 0 1 0 1 1 0 1 0
1 0 0 0 1 0 0 0 0 1
0 1 0 0 1 1 1 1 1 1
1 0 1 1 0 0 0 1 0 1
1 1 0 1 0 0 0 0 1 0
0 1 0 1 0 0 0 1 0 0
0 0 0 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0 0 0
1 0 1 1 1 0 0 0 0 0

H =

0 0 0 1 1 1 0 0 1 1
0 0 1 1 0 1 0 1 1 1
0 1 0 1 0 1 0 0 0 0
1 1 1 0 0 1 0 0 0 0
1 0 0 0 0 1 1 0 0 1
1 1 1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 0 1 1
1 1 0 0 0 0 1 1 0 1
1 1 0 0 1 0 0 1 1 0

To begin with, let us suppose that we do not have any additional information about vertex similarities. In this
case the configuration file config.txt may have the following form:

//*********************GRAPHS**********************************
//graph_1,graph_2 are graph adjacency matrices,
//C_matrix is the matrix of local similarities between vertices of graph_1 and graph_2.
//If graph_1 is NxN and graph_2 is MxM then C_matrix should be NxM
graph_1=../simple_test/G s
graph_2=../simple_test/H s
C_matrix=../simple_test/C s
//*******************ALGORITHMS********************************
//used algorithms and what should be used as initial solution in corresponding algorithms
algo=I U RANK QCV rand PATH s
algo_init_sol=unif unif unif unif unif unif s
solution_file=solution_im.txt s
//coeficient of linear combination between (1-alpha_ldh)*||graph_1-P*graph_2*P^T||^2_F +alpha_ldh*C_matrix
alpha_ldh=0 d
cdesc_matrix=A c
cscore_matrix=A c
C_matrix_dist=0 i
//**************PARAMETERS SECTION*****************************
hungarian_max=10000 d
algo_fw_xeps=0.01 d
algo_fw_feps=0.01 d
//0 - just add a set of isolated nodes to the smallest graph, 1 - double size
dummy_nodes=0 i
// fill for dummy nodes (0.5 - these nodes will be connected with all other by edges of weight 0.5(min_weight+max_weight))
dummy_nodes_fill=0 d
// fill for linear matrix C, usually that’s the minimum (dummy_nodes_c_coef=0),
// but may be the maximum (dummy_nodes_c_coef=1)
dummy_nodes_c_coef=0.01 d

qcvqcc_lambda_M=10 d
qcvqcc_lambda_min=1e-5 d

//0 - all matching are possible, 1-only matching with positive local similarity are possible
blast_match=1 i
blast_match_proj=0 i
//****************OUTPUT***************************************

4

//output file and its format
exp_out_file=../simple_test/exp_out_file s
exp_out_format=Parameters Compact Permutation s
//other
graph_dot_print=1 i;
debugprint=0 i
debugprint_file=debug.txt s
verbose_mode=1 i
//verbose file may be a file or just a screen:cout
verbose_file=cout s

Six graph matching methods are going to be used: ‘algo=I U RANK QCV rand PATH s’. To run the program,
just type:

./graphm config.txt

The results file exp out file may have three different parts, depending on the words mentioned in the list
exp out format of the configuration file:

• If the word Parameters in mentioned, then all parameters used will be listed, e.g.:

Experiment parameters:
graph_1=../simple_test/G
graph_2=../simple_test/H
C_matrix=../simple_test/C
algo=I U RANK QCV rand PATH
algo_init_sol=unif unif unif unif unif unif
solution_file=solution_im.txt
alpha_ldh=0
cdesc_matrix=A
cscore_matrix=A
hungarian_max=10000
algo_fw_xeps=0.01
algo_fw_feps=0.01
dummy_nodes=0
dummy_nodes_fill=0
dummy_nodes_c_coef=0.01
qcvqcc_lambda_M=10
qcvqcc_lambda_min=1e-05
blast_match=1
blast_match_proj=0
exp_out_file=../simple_test/exp_out_file
exp_out_format=Parameters Compact Permutation
graph_dot_print=1
debugprint=0
debugprint_file=debug.txt
verbose_mode=1
verbose_file=cout

• Then, if the word Compact is mentioned, the different values of the objective functions reached by the different
algorithms are printed, e.g.:

Experiment results:
Alpha I U RANK QCV rand PATH

Gdist 0.000000e+00 5.000000e+01 3.400000e+01 3.800000e+01 1.400000e+01 4.200000e+01 6.000000e+00
F_perm 0.000000e+00 5.813953e-01 3.953488e-01 4.418605e-01 1.627907e-01 4.883721e-01 6.976744e-02
F_exact 0.000000e+00 5.813953e-01 3.953488e-01 4.418605e-01 1.364375e-02 4.883721e-01 6.976744e-02
Time: 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

Here for each graph matching method has four associated values: ‘Gdist’ — ||AG − PAHPT ||2F , ‘ F perm’
— Fα(P) objective function value,‘ F exact’ — some graph matching methods like QCV produce a doubly
stochastic matrix Pe (an approximation of permutation matrix) and then project it on the set of permutation
matrices, so ‘ F exact’ is the value of the objective function in Pe. Line ‘Time’ represents algorithm timing
in seconds. The first column ‘ Alpha’ is the value of linear combination parameter α.
Note, that because of possible scale problems, we use normalized version of the objective function Fα(P). If
||AG − PAHPT ||2F and trCT P have completely different scales then it may be difficult to find a good alpha.
It will be either near zero, or near one depending on which component is bigger. That’s why we use the
following normalized version

Fα(P) = (1 − α)
1

||AG||2F + ||AH ||2F
||AG − PAHPT ||2F + α

1

||C||F
trCT P (6)

• Finally, if the work Permutation is mentioned, the solutions produced by each algorithm (i.e., vertex matching
and permutations) are printed, e.g.:

5

Permutations:
I U RANK QCV rand PATH
1 2 9 2 1 2
2 10 10 6 6 9
3 4 7 8 5 3
4 1 2 1 4 1
5 3 6 9 8 6
6 8 5 3 9 10
7 7 8 7 7 7
8 5 3 5 3 5
9 6 4 4 2 8
10 9 1 10 10 4

The permutations produced by different algorithms are organized in columns. For example, the permutation
produced by Umeyama algorithm ‘U’ is the second column (2, 10, 4, 1, 3, 8, 7, 5, 6, 9). It means that the vertex
number 1 of the graph graph 1 is matched to the vertex number 2 of graph 2, 2 → 10, 3 → 4 and so on.

On this example, the permutation produced by the PATH algorithm is the following:

Ppath =

0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0

It can easily be checked that the values Gdist and F perm reached by PATH are coherent with this permutation,
i.e., that:

Gdist = ||AG − PpathAHPT
path||

2
F = 6,

and

F perm = Fα(Ppath) =
1

||AG||2F + ||AH ||2F
||AG − PpathAHPT

path||
2
F = 0.0697.

Now, let us suppose that, in addition to graph adjacency matrices, we have a similarity matrix C:

CGH =

0.50 0.20 0.60 0.70 1.00 0.20 0.30 0.10 0.30 0.60
0.70 0.60 0.30 0.90 0.90 0.10 0.50 0.50 0.90 0.60
0.10 0.70 0.90 0.10 0.00 0.10 0.30 0.90 0.40 0.60
1.00 0.20 0.50 0.00 0.10 0.30 0.80 0.30 0.20 0.20
0.30 0.40 0.80 0.30 0.60 1.00 0.40 0.80 0.10 0.20
0.50 0.50 1.00 0.30 0.10 0.80 0.50 0.50 0.70 0.60
0.60 0.50 0.40 0.30 0.10 0.30 0.80 0.80 0.50 0.70
0.70 0.00 0.10 0.60 1.00 0.30 0.10 0.10 0.80 0.80
0.60 0.80 0.30 0.10 0.50 0.50 0.70 0.60 0.90 0.00
0.10 0.40 0.50 0.20 0.40 0.20 0.10 0.50 0.80 0.60

In order to match both the graph structures and the vertex similarities, we have to set up the value of parameter
α, for example, alpha ldh=0.44. Remember that all values can be changed directly in the config.txt, or can be
defined in the command line without changing the configuration file, e.g.:

graphm config.txt "C matrix=../simple test/C GH s;alpha ldh=0.44 d;"

In the last case, each definition have to be followed by ‘;’. The output file now looks as follows:

Experiment parameters:
graph_1=../simple_test/G
graph_2=../simple_test/H
C_matrix=../simple_test/C_GH
algo=I U RANK QCV rand PATH
algo_init_sol=unif unif unif unif unif unif
solution_file=solution_im.txt
alpha_ldh=0.44
cdesc_matrix=A

6

cscore_matrix=A
C_matrix_dist=0
hungarian_max=10000
algo_fw_xeps=0.01
algo_fw_feps=0.01
dummy_nodes=0
dummy_nodes_fill=0
dummy_nodes_c_coef=0.01
qcvqcc_lambda_M=10
qcvqcc_lambda_min=1e-05
blast_match=1
blast_match_proj=0
exp_out_file=../simple_test/exp_out_file
exp_out_format=Parameters Compact Permutation
graph_dot_print=1
debugprint=0
debugprint_file=debug.txt
verbose_mode=1
verbose_file=cout
Experiment results:

Alpha I U RANK QCV rand PATH
Gdist 4.400000e-01 5.000000e+01 3.400000e+01 5.000000e+01 3.400000e+01 4.200000e+01 2.600000e+01
F_perm 4.400000e-01 -1.394961e-01 -3.158493e-01 -3.960905e-01 -4.842394e-01 -7.932901e-02 -4.962396e-01
F_exact 4.400000e-01 -1.394961e-01 -3.158493e-01 -3.960905e-01 -5.964503e-01 -7.932901e-02 -4.962396e-01
Time: 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00
Permutations:
I U RANK QCV rand PATH
1 2 5 10 1 2
2 10 4 4 6 4
3 4 8 8 5 8
4 1 1 1 4 1
5 3 6 6 8 6
6 6 3 3 9 3
7 7 7 7 7 7
8 5 10 5 3 5
9 8 2 2 2 9
10 9 9 9 10 10

An important remark is that if the similarity matrix is used (C matrix dist=0 i) then the second component
is subtracted from the objective function, i.e., we solve the following problem:

Fα(P) = (1 − α)
1

||AG||2F + ||AH ||2F
||AG − PAHPT ||2F − α

1

||C||F
trCT P. (7)

In both cases (with or without similarity matrix), the PATH algorithm gives the best approximate solution. This
example may be found in test simple. Other examples are presented in test qap (graphs from QAP benchmark
library),test and test large (large size graphs). In each directory you can just call ./test script to see how it
works.

6 Installation

1. First, the GSL (GNU scientific library) should be installed, see http://www.gnu.org/software/gsl. Usually
it can be automatically installed by system package managers, for example, apt-get install gsl (Debian)
or yum install gsl (Fedora).

2. Download and unpack graphm-*.tar.gz

3. Go to graphm directory

4. Launch ./graphm comp

The executable file graphm will be created in bin directory. By default, the LP algorithm is not included be-
cause it needs the glpk solver. If you want to use the LP algorithm, you have first to install the glpk solver
(see http://www.gnu.org/software/glpk, or use a system package manager). Then proceed as for the normal
installation of graphm, except that on the last step of the installation process you should use ./graphm comp LP.

7 Package extension

It is very simple to add your own algorithm to the package if you are familiar with C++. There are three principal
steps

7

1. Create a child class from the abstract class algorithm (algorithm.h)

class algorithm_thebest : public algorithm

{

public:

virtual match_result match(graph &g,graph &h,gsl_matrix* gm_P_i=NULL, gsl_matrix* gm_ldh=NULL,double

};

You may add this description to algorithm ext.h

2. Write your own graph matching algorithm by redefining the virtual function match, this implementation
should be done in algorithm ext.cpp

match_result algorithm_thebest::match(graph& g, graph& h,gsl_matrix* gm_P_i, gsl_matrix* _gm_ldh,double

{

if (bverbose) *gout<<"The best matching algorithm"<<std::endl;

match_result mres; //class with results

gsl_matrix* gm_Ag_d=g.get_descmatrix(cdesc_matrix);//get the adjacency matrix of graph g

gsl_matrix* gm_Ah_d=h.get_descmatrix(cdesc_matrix);//get the adjacency matrix of graph h

//the similarity matrix C is defined in the algorithm class memeber gm_ldh

//dalpha_ldh is corresponding to the linear combination coefficent alpha

//YOUR OPERATIONS WITH MATRICES, RESULT IS A PERMUTATION MATRIX P

//do not forget to release the memory

gsl_matrix_free(gm_Ag_d);

gsl_matrix_free(gm_Ag_h);

mres.gm_P=P;//save the solution

mres.gm_P_exact=NULL; //you can save here the matrix which was used as an approximation for P

mres.dres=graph_dist(g,h,mres.gm_P,cscore_matrix);// distance between graph adjacency matrices

return mres;

}

3. Add line if (salgo.compare("THEBEST")==0){ return new algorith m thebest;} into
experiment::get algorithm(std::string salgo) (experiment.h).

4. That’s all ! You have to recompile the package by using graphm install, and you can use your algorithm.
For example, you can modify the configuration file by setting algo=THEBEST s.

References

[AS93] H.A. Almohamad and S.O.Duffuaa. A linear programming approach for the weighted graph matching
problem. TPAMI, 15, 1993.

[RJB07] R.Singh, J.Xu, and B.Berger. Pairwise global alignment of protein interaction networks by matching
neighborhood topology. Research in Computantional Molecular Biology, 4453:16–31, 2007.

[Ume88] Shinji Umeyama. An eigendecomposition approach to weighted graph matching problems. Transaction

on pattern analysis and machine intelligence, 10, 1988.

[ZBV08] Mikhail Zaslavskiy, Firancis Bach, and Jean-Philippe Vert. A path following algorithm for graph matching
problem. arXiv:0801.3654v1, 2008.

8

